以「日行萬步」觀點驗證身體活動量與健康管理關係

之初探

A Preliminary Study on Relationships among Physical Activity and Health Management：Confirming the $\ulcorner 10,000$ steps per day」 proposition

徐錦興

Hsu Chin－Hsing

國立屏東科技大學休閒運動保健系 副教授

摘要

本研究之目的在探討個體身體活動與其代謝症候群關聯因子之相關性，期能評估以計步器做爲個人健康管理工具之可行性，以驗證「每日一萬步，健康有保固」之健康宣導。以立意取樣方式選擇屏東縣某職場員工共 172 人爲硏究對象，其中男性 34 人，年齡爲 49.39 ± 10.05歲，女性138人，平均年齡 47.30 ± 10.42 歲。實驗操作期，以受試者所佩帶之計步器所得之步數爲其身體活動量之依據。研究者於操作期結束收集該受試者之年度健康檢查資料，包含身高，體重及相關生化檢測，如血壓，血糖及總膽固醇値。研究結果顯示該職場 20－50歲之受試對象其血壓，血糖，總膽固醇値及身體質量指數皆落於正常範圍値內；51歲以上之受試者，相關生化値落於正常範圍內，但總膽固醇値高於正常範圍，且身體質量指數（ $\mathrm{M}=23.7$ ）亦逼近肥胖之臨界値 \circ 此外，受試對象每日平均步數爲 9431 ± 3442 ，每日平均步數與受試對象之身體質量指數呈顯負相關（r＝－．21，p＜．05）；且在31－40歲•51－60歲兩群組之受試者，每日平均步數與血糖値呈顯負相關（r＝－．32，r＝－45， p＜．05），亦即每日步行步數愈高者，個體之血糖値呈較低之趨勢。根據相關文獻與研究結果，本研究建議爲能有效增進身體活動，計步器應可作爲一般民眾平日健康管理之工具。

The purpose of this study was to explore the relationships among lifestyle and subjects＇health－related index，such as blood pressure，blood
sugar，blood lipid and body mass index．Additionally，the researcher intended to evaluate the feasibility of $\ulcorner 10,000$ steps pre day \lrcorner in the health domain．There were 172 subjects recruited from a worksite in the southern part of Taiwan．A 3－hour course was offered prior to the study； moreover，the result of an annual employees＇health－examination was served as dependent variable in this study．All subjects were asked to wear pedometers for eight weeks and all data was collected from a web－base coding procedure．The average reading of pedometers was 9431 ± 3442 ，which was higher than the average of Taiwanese population． Results in this study indicated that the blood pressure and blood sugar of most subjects were in the appropriate range；however，the cholesterol was above the normal range $(\mathrm{M}=212 \mathrm{mg} / \mathrm{dl})$ and the BMI approached the threshold value of obese $(\mathrm{BMI}=23.7)$ with those who aged above 51 years old．The results also revealed that BMI and the daily stepping were negatively correlated（ $\mathrm{r}=-.21, \mathrm{p}<.05$ ）．It also indicated that the daily stepping was negatively correlated with blood sugar for two age groups， aged from 31 to $40(\mathrm{r}=-.32, \mathrm{p}<.05)$ and 51 to $60(\mathrm{r}=-.45, \mathrm{p}<.01)$ ．The results suggest that even a difference of 1,000 steps per day might exist a significant meaning on blood sugar control；meanwhile，as a self－monitor health－management tool for general population，pedometer is recommended for daily use．

關鍵字：身體活動（physical activity），健康管理（health management），計步器（pedometer）

壹，前言

隨著經濟發展，醫療科技之進步及飲食與生活型態的改變，台灣地區疾病發生型態由光復初期急性傳染性爲主，逐漸轉變爲以慢性退行性或代謝症候群爲主，其中尤以心血管疾病，腦血管疾病及糖尿病之罹病率增加最爲顯著，在生活品質指標意義上也最爲重要。以近年台灣地區十大死因統計資料而言，腦血管疾病與心血管疾病盤據國人十大死因排名前三位（國民健康局，2007）。推估此類型疾病之盛行

除與遺傳有關，亦與個體生活型態有直接關係。如心血管疾病的死亡率隨體重增加而升高，當身體質量指數（Body Mass Index，BMI）大於 24時，代謝症候群危險性便明顯增加；故體重控制是代謝症候群疾病群患者最須正視之課題。另一項與個體代謝症候群具高度相關之疾病即爲糖尿病；相較於其他疾病在醫學科技進步後獲得控制的成效，糖尿病似乎有逐年升高的趨勢。

在健康促進架構中，增加身體活動量扮演重要的角色；此概念近年來已逐漸被世界各國廣泛運用在各年齡層，各群體的健康促進策略中。增加身體活動量除能強化身體活動力，增強體循環功能，最顯著的效應爲增加最大攝氧量（賴美淑，2000a）。研究證實增加身體活動量或參與規律運動，是預防及控制慢性疾病（如心臟血管疾病，糖尿病，肥胖，癌症及高血壓等）的有效方法（Conn，Burks，Pomeroy， Ulbrich，\＆Cochran，2003；Petrella，Koval，Cunningham，\＆Paterson， 2003）。另一方面，國內外實證研究亦已證實，身體活動不足，休閒時間的身體熱能消耗量較少，體適能較差者較容易罹患心血管疾病，甚至有較高的死亡率（林瑞興，1999；Shephard，1990）。此外，透過增加身體活動量或有計畫的參與運動的過程，亦能提昇個體之生活品質，增進其心理健康（Kao，Lu，\＆Huang，2002），且能減少健康保險給付（Chobanian，Bakris，\＆Black，2003）。

然新近研究顯示，國人有規律運動習慣的比率不到 20%（賴美淑，2000b）；與多年前之研究一般民潨經常運動比率只佔 20.5% ，並無顯著差異（林永明，1995）。根據國民健康局台灣地區國民健康促進知識，態度與行爲調查結果指出，自述「日常活動或工作爲不耗體力，其平時沒有運動習慣」的男性國人爲 35% ，女性爲 42% ；自述「平時有運動，但每週運動次數少於三次者」的男性國人爲 36% ，女性爲 34% ；自述「平時有運動，但每次運動次數少於三十分鐘者」的男性國人爲 17% ，女性爲 24% ；自述「平時有運動，但沒運動到會喘的程度」的男性國人爲 65% ，女性爲 73%（國民健康局，2005）。上述資料顯示，超過三分之一的男性及超過五分之二的女性國人並無參與運動的習慣，可推估多數的台灣地區民眾的身體活動量不足。身體活動量不足是導致生活型態成爲坐式生活的主要原因；鼓勵民圌改善生活型態，亦應由增加身體活動量著手。

增加身體活動量，除以結構性活動（如參與運動團䧘，體育課程等）介入外，生活型態的改變是另一項選擇。「日行萬步」的概念，即在日本波野教授的提倡下，成爲改變生活型態的主流運動；走路是

一種最自然，簡易，安全且開銷最低的有氧運動，所以健走運動一直是全世界最多醫生建議的運動處方（徐錦興，2007）。過去的觀念一直認爲健走的運動量可能不足而無法改善心肺功能，但現今越來越多的研究證實只要行走速度在 $4 \mathrm{mile} / \mathrm{hour}$（ $6.4 \mathrm{~km} / \mathrm{hour}$ ）且步行時間達到 30 分鐘以上者，健走運動一樣可以改善個體的心肺功能（Hoeger \＆ Hoeger，2001）。

個體主動促進健康之過程，亦是個體改變生活型態之過程；就主動健康促進的觀點，動態生活模式是此論點追求的核心。實施動態生活，主要的方法爲加入實施簡易且安全之運動處方至日常生活中一 －舉凡增加走路距離，上下樓梯次數，從事家事頻率或延長運動時間等措施，皆爲動態生活的手段。Sirard \＆Pate（2001）分析不同生活型態之評估工具，發現以計步器作爲身體活動評估工具爲最多硏究者探用，其原因爲計步器同時具備價格經濟與操作便利兩項特性；而以計步器作爲身體活動範圍的研究工具之信度與校度已被相關研究證實（Rowe，Mahar，Raedeke，\＆Lore，2004）。

本研究之主要目的在探討個體身體活動與其代謝症候群關聯因子之相關，並期能從研究過程中評估以計步器做爲個人健康管理工具之可行性，以驗證「每日一萬步，健康有保固」之理論。研究結果期能提供台灣地區推廣健康體能活動之參考，並期能提供國人在選擇健康管理工具之依據。

式，研究方法

一，研究對象

本研究以位於屏東縣職場員工爲受試樣本，研究者先於該職場針對全體員工召開硏究說明會，闡述硏究過程與目的，並徵求所有受試對象同意後進行。本研究以屏東縣某職場員工共256位，年齡21至 65 歲爲研究對象，於研究期程內達有效登錄每日步行步數標準者共 172 人；其中男性 34 人，平均年齡 49.39 ± 10.05 歲；女性 138 人，平均年齡 47.30 ± 10.42 歲。

二，研究流程

爲能使受試對象確實明瞭硏究目的，研究者另召開三小時之實驗說明會，請受試對象簽立參與研究之同意書；說明會中除提供受試對象對於生活型態之基本概念，並提供計步器正確使用方式與透過網路登錄每日步行步數的電腦操作步驟等知能。實驗期共計八週，受試

對象於規定時間內自行由網路登錄個人計步器之讀數。研究者由資料庫之後端管理傾取受試對象的有效步行步數外；並經受試對象同意，彙整及配對該職場員工於實驗期間內所完成的年度健康檢查之血液相關生化指數進行統計分析。

三，研究工具

本研究以 Omron 公司所製造之計步器爲主要研究工具，其型號爲 HJ－109 Pedometer。該計步器除能紀錄每日步行步數，消耗之卡路里，步行距離外，何能提供每日零點步數歸零，記憶過去七日步數之功能。爲有效彙整眾多受試對象每日步行步數，研究者建構「動態生活網」資料庫（http：／／activelife．npust．edu．tw／）（圖 1），供受試對象利用網際網路進行計步器之步數讀數之登錄。

四，統計分析

本研究以平均數 \pm 標準差表示所有測量的變數，以 SPSS 10.0統計軟體進行統計分析，各項檢定之顯著水準設爲 $\alpha=.05$ 。研究結果中除描述說明所收集之變數特性外，並以皮爾森積差相關進行步行步數與血壓，血糖及血脂値間之相關檢定。此外，硏究者沿用 Tudor－Locke（2005）針對個體每日平均步行數區分其生活型態之建議，將本研究受試對象所得之結果區分爲：日行步數 5000 步以下爲坐式生活型態， $5001 \sim 10,000$ 步爲一般生活型態及 10,001 步以上爲動態生活型態；並以卡方檢定驗證本硏究受試對象之步行步數與 Tudor－Locke 所建議之生活型態的差異。

參，結果與討論

一，結果

表 1 與圖 2 分別呈現受試對象不同年齡分組與身體質量指數，血壓之收縮壓和舒張壓値，飯前血糖値及總膽固酧値等之對照表。研究結果顯示 21～30，31～40，41～50歲受試對象，其健檢指數對照國民健康局所頒布之國人健康指數，皆落於正常範圍。但 51－60 歲爲群組之受試對象，結果顯示其總膽固醇值略高於正常範圍，身體質量指數亦逼近肥胖之臨界値（BMI＝27）；而 61 歲以上之受試對象之總膽固醇値高於正常範圍，身體質量指數亦臨近肥胖之臨界値。

圖 1：計畫網站（資料來源： http：／／activelife．npust．edu．tw／ movementLife／index．asp）

表1：不同年龄層受試對象之身體質量指數，收縮壓／舒張壓，飯前血糖及總膽固醇平均數與標準差

	身體質量指數（BMI）	收縮壓／舒張壓 （mmHg）	飯前血糖值 （mg／dl）	總膽固醇 （mg／dl）
$21 ~ 30$ 歲組	19． 92 ± 1.77	$\begin{gathered} 106.21 \pm 11.07 \\ 56.28 \pm 7.27 \end{gathered}$	86． 56 ± 13.46	164． 61 ± 35.23
$31 \sim 40$ 歲組	20.88 ± 2.01	$\begin{gathered} 108.68 \pm 10.27 \\ 69.65 \pm 6.12 \end{gathered}$	86.51 ± 12.25	170.03 ± 30.53
41～50歲組	23． 29 ± 1.64	$\begin{gathered} 115.75 \pm 12.51 \\ 73.92 \pm 5.38 \end{gathered}$	87．07 ± 13.88	183.61 ± 34.68
$51 ~ 60$ 歲組	23． 71 ± 3.02	$\begin{gathered} 116.59 \pm 14.33 \\ 74.73 \pm 8.42 \end{gathered}$	91． 92 ± 16.52	208． 49 ± 35.91
65～ 歲組	23． 42 ± 3.83	$\begin{gathered} 122.45 \pm 11.98 \\ 74.77 \pm 7.36 \end{gathered}$	92． $26 \pm \pm 15.18$	217． 86 ± 36.09

此外，以全體受試樣本之年齡與健康因子指數進行皮爾森關連檢定，結果顯示年齡變項收縮壓（ $\mathrm{r}=.36, \mathrm{p}<.01$ ），舒張壓（ $\mathrm{r}=.29$ ， $\mathrm{p}<.01$ ），血糖値（ $\mathrm{r}=.14, \mathrm{p}<.05$ ），總膽固醇（ $\mathrm{r}=.41, \mathrm{p}<.01$ ），身體質量指數（ $\mathrm{r}=.46, \mathrm{p}<.01$ ）皆呈現中度至低度之顯著正相關。此外，受試樣本之總膽固醇値亦與相關生化指數呈現顯著正相關，包括收縮壓 （ $\mathrm{r}=.19, \mathrm{p}<.01$ ），舒張壓（ $\mathrm{r}=.18, \mathrm{p}<.01$ ），血糖値（ $\mathrm{r}=.15, \mathrm{p}<.05$ ）。

- ー一總膽固醇 - 一 飯前血糖値 - ——身體質量指數	一一收縮壓

圖 $2: ~$ 受試對象年齡與各項健康指數折線圖

本硏究分析受試對象每日平均步數與其身體質量指數｢三高値」 （血壓，血糖，總膽固醇）間之相關，藉以了解生活型態與上述變項間之關聯程度。結果發現，參與受試之該職場員工每日平均步數爲 9431 步 ± 3442 ；以年齡層組區分，21－30歲之每日平均步數㐆 9240 ± 3205步，31－40歲爲8205 ± 2976 步，41－50歲爲8985 ± 3690 步，51－60歲爲 10640 ± 3911 步， 61 歲以上爲 10991 ± 3882 步；以年齡與每日平均步行步數兩項變數進行相關檢定，結果顯示年齡與步行步數間呈顯著相關 （ $\mathrm{r}=.21, \mathrm{p}<.01$ ）。

圖 3 爲身體質量指數與每日平均步行步數間的關係；顯示兩者間呈現顯著負相關（r＝－．21， $\mathrm{P}<.05$ ）；另以Tudor－Locke（2005），建議每日平均步行步數區分個體生活型態，硏究者進一步定義每日步行步數平均在 5000 步以下爲坐式生活型態；5001～10，000步爲一般生活型態及 10,001 步以上爲動態生活型態。受試對象之身體質量指數，依國民健康局所頒布之國人健康體能對照表中不同年齡層組BMI偏低，適中及偏高三組進行卡方檢定，結果顯示不同生活型態與身體質量指數間具顯著差異（ $\chi 2=9.67, \mathrm{p}<.05$ ）。

圖3：受試對象身體質量指數與每日平均步行步數散佈圖
以每日平均步數爲主要變項與受試對象之血壓値，血糖値及血脂値等變項進行相關檢定，結果顯示31－40歲，51－60歲之受試者，步行步數與血糖値分別呈現顯著負相關 $\mathrm{r}=-.32, \mathrm{p}<.05, ~ \mathrm{r}=-.45, \mathrm{p}<.01$ ），顯示每日步行步數與個體之血糖値間呈現反向關係；此外，步行步數與收縮壓，舒張壓，總膽固醇値間亦呈現負相關，惟未達統計上之顯著水準。

二，討論

高血壓，高血脂，高血糖，高膽固醇與肥胖已被醫界認爲是代謝症候群的危險因子，國民健康局於2004年特別針對此提出國人罹病標準：血壓値標準爲大於 $135 / 85 \mathrm{mmHg}$ ，三酸甘油脂標準爲大於 $150 \mathrm{mg} / \mathrm{dl}$ ，空腹血糖値大於 $110 \mathrm{mg} / \mathrm{dl}$ ，高密度脂蛋白膽固醇則是男性小於 $40 \mathrm{mg} / \mathrm{dl}$ ，女性小於 $50 \mathrm{mg} / \mathrm{dl}$ ，身體質量指數標準大於 27 。以上五項指標値中，超過三項即被認定爲罹患代謝症候群。此外，根據1993年至1996年的國民營養調查，國民健康局對國人之身體質量指數之建議，BMI應探24和27爲切點，B M I 超過24的成年人中，男女各有 68% 和 65% 有代謝症候相關病徵，如高血糖，高血脂，高血壓，高尿酸等；若 BMI 升至 27 以上，罹患此症候的成年人更高達 85% 。國內相關研究（陳建仁，2003）亦指出「心血管疾病群」或「腦血管疾病」，已逐漸變成危害台灣地區個體生命之主要疾病；而這些疾病群所共有的危險因子，即高血壓，糖尿病，高血脂症等。高血壓係指血壓過高而導致身體不適或血管病變的狀況，血壓過高可能導致個體之動脈硬化；此外，長期血脂肪過高，亦是可能造成動脈硬化的主要原因；血糖値檢查即是檢查血液中的葡萄糖含量，藉以判斷足否罹患糖尿病或監測糖尿病人的病情；此三項數値過高，可能引發腦中風或其他病變，如心臟病，胰臟炎，糖尿病，甲狀腺機能低下，破壞腎功能引發尿毒症等。在台灣地區此三類症狀之盛行率皆隨年齡上升，而以60－69歲組爲最高。

研究結果顯示，本研究受試對象之年度健檢資料多能符合國民健康局所建議之健康指標。美國政府對高血壓之新定義一高血壓係指收縮壓高於或等於 140 mmHg 及或舒張壓高於或等於 90 mmHg ，正常血壓値的定義則爲收縮壓低於 120 mmHg 且舒張壓低於 80 mmHg ；此外，介於正常和高血壓之間的稱爲高血壓前期，高血壓又區分爲兩期，第一期高血壓收縮壓 $140-159 \mathrm{mmHg}$ 及或舒張壓 $90-99 \mathrm{mmHg}$ ，第二期高血壓收縮壓等於或高於 160 mmHg 及或舒張壓等於或高於 100 mmHg 。以此標準，則弥現 61 歲以上受試對象平均血壓已落於高血壓前期値•因高血壓已被證實爲增加心血管疾病罹患率的一項重要危險因子，控制血壓可以降低個體器官傷害及相關做發症，如左心室肥大，出血性腦中風，主動脈瘤及剥離，腎衰竭及視網膜病變等。個體已處於高血壓前期者，並改變生活型態，以達健康促進之效。

本研究以每日步行步數爲區辨個體生活型態之標準；研究結果顯示受試對象平均步數爲 9431 步，較國民健康局所推估之國人每日

平均 6，500 歩爲高。此外，硏究結果顯示每日步行步數與年齡間呈現顯著正相關，亦即受試對象其年齡與每日步行步數呈現正向關係 （ $\mathrm{r}=.21, \mathrm{p}<.01$ ）。推估此步行步數之增加可能與國人之運動習慣有關，先前研究（溫啓邦，衛沛文，詹惠婷，詹益辰，江博煌，鄭丁元，2007）指出，國人之運動習慣與年齡間呈現倒 U 形現象，運動行爲與步數增加之關係向待未來之實證研究確認。

肆，結論與建議

一，結論

根據本研究結果，每日步行步數與不同年齡組別受試者各項血液生化指數存在不同程度之相關，其中尤以步行步數與空腹血糖値間之相關最爲顯著。空腹血糖値爲血液中葡萄糖含量之檢查値，是評估個體是否罹患糖尿病或監測糖尿病人病情程度的重要指標。以「預防勝於治療」的觀點而言，積極預防糖尿病將比發病後處理侀發症更具意義；另就初級預防而言，先前研究指出，無論男女，年齡族群，體能活動不足將會增加未來發生糖尿病之危險（鍾實玲，2000；陳敏麗，黃松元，2005）。如對照本研究之結果，每日平均步行步數在 10,000步以上（平均步數爲 10047 ± 1982 ）者其空腹血糖値多落於正常値內 （ $\mathrm{PG}<100 \mathrm{mg} / \mathrm{dl}$ ）；而血糖代謝異常（FPG $100 \sim 126 \mathrm{mg} / \mathrm{dl}$ ）之受試者每日平均步數約爲 9000 步（平均步數爲 9080 ± 1582 ）。雖然兩組間之差異約只 1000 步，但硏究結果顯示此活動量對血糖監測指標具有顯著之意義；此結果亦驗證「每日一萬步」在健康管理，尤其是血糖管理上之重要性。

二，建議

世界衛生組織相關硏究顯示，缺乏活動或静態生活是導致全球死亡及殘障的十大主要因素之一。由於缺乏足夠之身體活動，尤指使用大肌群的身體活動，每年造成全世界兩百萬人以上的死亡（國民健康局，2003）；坐式生活型態會增加個體的死亡率，並可能導致個體心血管疾病，糖尿病及肥胖罹率之風險增加爲兩倍；此外，缺乏運動更可能增加個體罹患憂鬱症與焦慮症的機會（Daley，MacArthur，\＆ Winter，2007）。適當地改變個體生活習慣即能預防 60% 的第二類型糖尿病（NIDDN）的發生（Kiblinger \＆Braza，2007）．，而如能保持適度的體能活動，就可以預防癌症發生率（Weinstein，Bates，Spaltro，Thaler，\＆ Steingart，，2007）。研究者認爲增加身體活動量以改變生活型態是中高

年齡族群者在健康促進議題上不可或缺的重點，尤其在血糖控制議題上；先前研究建議健走運動是代謝症候群疾病患者或中高年齡族群之最佳運動治療方法之一（Catrine，2002），而藉佩帶計步器所得之步數回饋機制，約可增加個體每日步行步數2000步（Rowe，Mahar，Raedeke \＆Lore，2004）。本研究建議民圌除可利用計步器了解個人目前之生活型態，作爲改變末來生活型態之依據外，並可將「健走」作爲個體促進健康策略之一。對糖尿病友而言，「每日一萬步」應爲生活型態的重要指標，而計步器亦則可視爲平日控制血糖變化之健康管理工具。

參考文獻

1．林永明（1995）。國人運動習慣之採討一初步報告。中華民國復健醫學會雜誌， 23 （2），135－140。
2．林瑞興（1999）。增加身體活動量對老年人的重要性。大專體育，46， 87－93。

3．徐錦興（2007）。走路有風一－透過健走，促進健康。科學發展，413， 72 ～ 77 。

4．國民健康局 2003 年世界健康日（2003）。取自邁向健康動態生活承諾書網頁：http：／／who．ohayo．com．tw／MH／event／item04．asp。
5．國民健康局民國台灣地區國民健康促進知識，態度與行爲調查（2005）。取自健康指標互動式網路線上查詢系統： http：／／olap．bhp．doh．gov．tw／index．htm 。

6．國民健康局（2007）。中華民國 95 年死因統計。台北市，國民健康局。
7．陳建仁（2003）。台灣地區高血壓，高血糖，高血脂盛行率調查報告。台北市，國民健康局。

8．陳敏麗，黃松元（2005）。某社區民圌糖尿病篩檢中血糖値與糖尿病高危險因子及健康促進生活型態之探討。衛生教育學報，24，1－23。
9．溫啠邦，衛沛文，詹惠婷，詹益辰，江博煌，鄭丁元（2007）。 從分析運動熱量談當前台灣全民運動政策一比較台灣與美國民罧的運動習慣，強度與頻率。臺灣公共衛生雜誌，26（5），386－399。

10．賴美淑（2000a）。吸菸與心臟血管疾病的關係：可能之病理生理轉機。行政院衛生署：國家衛生研究院論壇。
11．賴美淑（2000b）。運動與心血管功能。行政院衛生署：國家衛生研究院論壇。

12．鍾寶玲（2000）。老年糖尿病患健康促進生活型態及相關因素之探討。高雄醫學大學護理學研究所碩士論文，未出版，高雄市。
13. Catrine, T. (2002). Taking Steps toward increased physical activity:Using pedometers to measure and motivate. Presidents' Council on Physical Fitness and Sports Research, 2002-3-17.
14. Chobanian, A. V., Bakris, G. L., Black, H. R. (2003). Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee. The Journal of the American Medical Association, 289, 2560-2572.
15. Conn, V. S., Burks, K. J., Pomeroy, S. H., Ulbrich, S. L., \& Cochran, J. E. (2003). Older women and exercise: explanatory concepts. Women's Health Issues, 13(4), 158-166.
16. Daley, A. J., MacArthur, C., \& Winter, H. (2007). The Role of Exercise in Treating Postpartum Depression: A Review of the Literature. Journal of Midwifery and Women's Health, 52 (1), 56-62.
17. Hoeger, J. D., \& Hoeger, S. M. (2001). Walking for Fun and Fitness. Wadsworth, Belmont, CA.
18. Kao, Y.H., Lu, C.M., Huang, Y.C. (2002). Impact of a transtheoretical model on the psychosocial factors affecting exercise among workers. The Journal of Nursing Research, 10(4), 303-310.
19. Kiblinger, L., \& Braza, N. L. (2007). The Impact of Diabetes Education on Improving Patient Outcomes. Insulin, 2(1), 24-30.
20. Petrella, R. J., Koval, J. J., Cunningham, D. A., \& Paterson, D. H. (2003). Can primary care doctors prescribe exercise to improve fitness? The step test exercise prescription (STEP) project. American Journal of Preventive Medicine, 24(4), 316-322.
21. Rowe, D. A., Mahar, T. M., Raedeke, T. D., \& Lore, J. (2004). Measuring physical activity in children with pedometers: Reliability, reactivity and replacement of missing data. Pediatric Exercise Science, 16, 343-354.
22. Shephard, R. J. (1990). Physical activity and cancer. International Journal of Sports Medicine, 11(6), 413-420.
23. Sirard, J. R. \& Pate, R. R. (2001). Physical activity assessment in children and adolescents. International Journal of Sports Medicine, 31(6), 439-454.
24. Tudor-Locke. C., Sisson, S. B., Collova, T., Lee, S. M., \& Swan. P. D. (2005). Pedometer-Determined Step Count Guidelines for Classifying Walking Intensity in a Young Ostensibly Healthy Population. Canadian Journal of Applied Physiology, 30(6), 666-676.
25. Weinstein, H., Bates, A. T., Spaltro, B. E., Thaler, H. T., \& Steingart, R. M. (2007). Influence of Preoperative Exercise Capacity on Length of Stay after Thoracic Cancer Surgery. The Annals of Thoracic Surgery, 84(1), 197-202.

